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The Inflation Persistence of Staggered Contracts

Luca Guerrieri ∗

Abstract

One of the criticisms routinely advanced against models of the business cycle with staggered

contracts is their inability to generate inflation persistence. This paper finds that staggered

contracts à la Taylor are, in fact, capable of reproducing the inflation persistence implied by U.S.

data. Following Fuhrer and Moore, I capture the moments that the contract specification needs

to replicate by using the correlograms from a small vector autoregression (VAR) that includes

inflation among the endogenous variables. A simple structural model substitutes the inflation

equation from the VAR with the contract specification. I estimate the contract parameters in the

structural model by maximum likelihood. The correlogram for the endogenous variables from the

estimated structural model, including that for inflation, are very close to the correlograms from

the VAR (and are contained within their 90% confidence intervals). By the same metric, where

Taylor contracts do not fare well is in reproducing the cross-correlations between inflation and

output.
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1 Introduction

The study of the Phillips curve has been central to macroeconomics since Phillips (1958)

identified a negative correlation between inflation and unemployment. King and Watson

(1994) give a comprehensive discussion of the evolution of the traditional empirical litera-

ture.

Nominal rigidities have become the standard theoretical underpinning of what Gaĺı and

Gertler (1999) called “the new Phillips curve”. They used limited information estimation to

show that a standard contracting specification provides a good description of the U.S. data.

Sbordone (2002) validated the results of Gaĺı and Gertler (1999) by using an alternative

estimation method that follows Campbell and Shiller (1988). Gaĺı, Gertler, and López-

Salido (2001a) suggested that the staggered contract mechanism fits the European data

possibly even better than the U.S. data. Rudd and Whelan (2001) question the power of

tests employed by Gaĺı and Gertler (1999) and Gaĺı, Gertler, and López-Salido (2001a).

Gaĺı, Gertler, and López-Salido (2001b) address these concerns.

The results of Fuhrer and Moore (1995) stand out in the growing empirical literature on

the new Phillips curve. They showed that the staggered price mechanism of Taylor (1980)

(henceforth, referred to as “standard”) is not capable of generating the inflation persistence

that they observed in the U.S. data. Fuhrer and Moore showed that an alternative con-

tracting specification (henceforth, referred to as “relative”), first introduced by Buiter and

Jewitt (1981), fares much more favorably in fitting the U.S. data. This alternative spec-

ification postulates that, when choosing a contract wage, workers care about the relative

remuneration with respect to other outstanding contracts. This has the practical effect of

introducing an extra lag of inflation in the implied Phillips curve, which accounts for its

ability to generate greater persistence. The results of Fuhrer and Moore (1995) continue to

be greatly influential. Representative recent papers that list it as a motivation are Calvo,

Celasun, and Kumhof (2001), who postulate sticky inflation at the onset, and Mankiw and

Reis (2002), who build on the work of Roberts (1997) in assuming sticky information.

The evaluation procedure of Fuhrer and Moore (1995) has two steps. First, a simple
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statistical model captures the properties of the data that the contracting specification

needs to reproduce. The statistical model takes the form of an unconstrained vector auto-

regression (VAR) with output per person, inflation and the short-term interest rate as

the endogenous variables. Then, the equation for inflation in the VAR is replaced with a

contracting specification, thus generating a structural model where only the parameters in

the contracting specification are unknown. Second, the structural parameters are estimated

via maximum likelihood.

Coenen and Wieland (2000) followed the methodology of Fuhrer and Moore (1995)

to calibrate a general equilibrium model of the Euro area. In line with Gaĺı, Gertler,

and López-Salido (2001a), they found that both the standard and the relative contracting

specification “fit euro area data reasonably well.”

The sample in Fuhrer and Moore (1995) spans the period from 1965 to 1993, thus

including the oil crises of the 70s, as well as the Volcker disinflation. Evans and Wachtel

(1977), Taylor (2000), and Cogley and Sargent (2000) documented that a high degree of

inflation persistence is a characteristic of the late 1960s and 1970s, but not necessarily of

the remaining postwar period. Erceg and Levin (2001) developped a model with standard

contracts where agents use optimal filtering to disentangle persistent and transitory shifts

in monetary policy. They attributed the observed persistence in inflation, following the

Volcker disinflation, to uncertainty over monetary policy.

The purpose of this paper is to test whether or not the lower persistence of inflation

found by other authors in the U.S. data for the 1980s and 1990s translates into significantly

different estimates of the parameters in the standard and relative contract model. As a

byproduct, this is also a test of whether the results of Fuhrer and Moore (1995) still

hold true when using the additional data that have become available since the original

publication of their study. Not only are longer time series available, but the series have

been revised. The data that Fuhrer and Moore (1995) used come from the productivity

release of the Bureau of Labor Statistics. Duke and Usher (1998) document the latest

improvements to these series.
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Using the sample from 1980 to 2001, I find that relative contracts are able to reproduce

the inflation persistence observed in the data. This is still true if the estimation sample

starts in 1965q1 or in 1960q1. The results concerning relative contracts reported by Fuhrer

and Moore (1995) still hold with updated data and longer series, and are resilient to

introducing breaks in the linear detrending of output, as well as reestimation over smaller

subsamples.

More surprisingly, I also find that standard contracts perform very well. The metric

that I use to make these claims is the distance between correlograms for inflation, the

interest rate and output coming from the VAR and the structural models. I compare

the correlograms from the unrestricted VAR with the correlograms from the estimated

structural model with standard contracts and with relative contracts. I find that the

correlogram from the VAR for each of the three endogenous variables is close to the two

structural counterparts across all the subsamples I consider. I compute the Monte-Carlo

90% confidence interval for the correlograms from the VAR. The correlograms for the two

structural models invariably lie within the confidence bands. This is true not only for

the benchmark sample 1980 to 2001, but also for extended samples going back to 1960.

Where Taylor contracts do not perform well is in reproducing the cross-correlations between

inflation and output.

Focusing on the 1980s and 1990s, I estimate a change in the structural parameters of

the two contracting models I consider. This shift is consistent with a lower persistence of

the inflation series, but is not statistically significant.

In previous work, Guerrieri (2001), found that staggered contracts set up following

Calvo (1983), produced a better fit to the U.S. data than staggered contracts of one single

fixed duration à la Taylor. Similarly, Jadresic (1999) found that a trimodal distribution of

contract durations fit the U.S. data better than a fixed contract duration. The contracts

in this paper, by allowing the coexistence of multiple contract durations, follow more

closely the setup of Taylor (1980). Yun (1996) showed how to reconcile contracts à la

Calvo with a first order condition coming from a profit maximization problem. Chari,
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Kehoe, and McGrattan (2000), transferred the setup of Yun (1996) to contracts of fixed

duration. In this paper I show how to allow for multiple contracts of fixed duration à la

Taylor, in a way that can be mapped into a profit maximization exercise, and that is still

parsimonious in terms of the size of the implied state space. This reinterpretation, can

then be mapped into the setup of Fuhrer and Moore (1995). Allowing for a distribution

of contract durations makes Taylor staggered contracts closer to the Calvo counterparts.

The single contract duration is rejected by the data, substantiating that this development

has empirical relevance.

The plan for the rest of the paper is as follows: in Section 2, I build some intuition for

the difference between standard contracts and relative contracts; in Section 3, I lay out

the methodology I used in the VAR estimation. In Section 4, I describe the structural

estimation, and report the estimation results; and in section 5, I conclude.

2 Comparing Standard and Relative Contracts

Gaĺı and Gertler (1999) gave a good review of the recent state of the literature. I will only

attempt to summarize the salient points.

The structure behind the new Phillips curve is an environment of monopolistically

competitive firms that are faced with a constraint on price adjustment. Following Taylor

(1980), firms are allowed to reset their contract price every n periods. Firms are otherwise

symmetric in every other respect. At any period, n overlapping contracts are in force.

Chari, Kehoe, and McGrattan (2000) showed that profit maximization implies a first

order condition for a firm resetting its price at time t, that, by log-linearizing, leads to:

Pt =
n−1
∑

i=0

1

n
Et

(

P̄t+i + γỸt+i
)

(1)

Pt is the log of the contract price set at time t, Ỹt is an output measure and Et denotes

expectations conditional on the information set available at time t. This also happens to be

be the contracting specification chosen by Taylor (1980)1. The log of the aggregate price,

1This is indeed a special case of that model, for a particular set of contract weights. Taylor’s paper focused on
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P̄t, is then given by:

P̄t =
n−1
∑

i=0

1

n
Pt−i (2)

combining equation (1) and equation (2), setting n = 2, allowing for the fact that under

rational expectations Et−1Pt = Pt−εt (where ε is a forecast error), and finally reworking the

price equation in terms of inflation, denoted by πt, one obtains the Phillips curve equation,

which as shown in Appendix A, is given by

πt = Etπt+1 + γ(Ỹt + EtỸt+1 + Ỹt−1 + Et−1Ỹt)−
1

4
εt (3)

2.1 The relative contract model

Fuhrer and Moore (1995) argued that the persistence imparted to inflation by the standard

contracting specification does not fit the U.S. inflation data as well as their relative spec-

ification. Their alternative model can be summarized by the following equations, where

each variable is to be thought in log deviation from steady state. The contract equation is

the following:

Pt − P̄t =
n−1
∑

i=0

1

n
Et

(

Vt+i + γỸt+1

)

(4)

where Pt is the price contract that starts in period t, P̄t is the aggregate price level, Ỹt is an

output measure. The aggregate price level is still governed by equation (2). Vt is a relative

price index, that takes following form

Vt =
n−1
∑

i=0

1

n

(

Pt−i − P̄t−i
)

(5)

Then, for n=2, the Phillips curve equation implied by this contracting specification takes

the form:

πt =
1

2
(πt−1 + Etπt+1) + γ(Ỹt + EtỸt+1 + Ỹt−1 + Et−1Ỹt)−

1

4
εt (6)

staggered wages. The subsequent literature shifted the setup to staggered prices. Huang and Liu (2002) showed that the

staggered wage interpretation allows one to escape the criticism of staggered contracts of Chari, Kehoe, and McGrattan

(2000).
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Comparing equations (3) and (6), one can immediately see that the relative contract spec-

ification, for any given contract length, appends an extra lag of inflation to the Phillips

curve equation.

2.2 Allowing for multiple contract lengths

Rather than maintaining that all contracts last n periods, a more flexible setup would allow

for a distribution of contract durations. Following Blinder (1994), one could also brand

such a setup as more plausible. A simple way to model this distribution is to assume that

when firms set a price, they face uncertainty over the contract duration. The price they set

might be in force for any length of time between 1 and n periods. Firms do know, however,

the relevant probabilities. Then, let θ1 be the probability that a contract will be in force

only one period, let θ2 be the probability that a contract will be in force for two periods,

and so on. Let the vector θ summarize the relevant contract weights. The elements of θ

are all non-negative and sum to 1. Fixing the longest contract duration at four periods

(n = 4), the aggregate price level becomes

P̄t = θ1Pt + θ2

1

2

1
∑

i=0

Pt−i + θ3

1

3

2
∑

i=0

Pt−i + θ4

1

4

3
∑

i=0

Pt−i (7)

The setup of Fuhrer and Moore (1995) can be reinterpreted to conform to this setup. One

way to impose some structure on the distribution of contract lengths would be to pick a

functional form for the weights on contract prices in equation (7). Letting fi denote the

weight on the contract price with lag i, equation (7) would then be rewritten as

P̄t =
3
∑

i=0

fiPt−i (8)

Fuhrer and Moore (1995) imposed that

fi = 0.25 + (1.5− i)s (9)

where s is the only parameter governing the shape of the distribution of contract durations.

To be able to match a choice for s into a vector θ, s needs to be contained in the interval
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Table 1: Mapping s into θ

s θ1 θ2 θ3 θ4 f0 f1 f2 f3

0 0 0 0 1 0.25 0.25 0.25 0.25

0.06 0.06 0.12 0.18 0.63 0.34 0.28 0.22 0.16

0.08 0.08 0.16 0.24 0.52 0.37 0.29 0.21 0.13

1
6

1
6

1
3

1
2

0 1
2

1
3

1
6

0

between2 0 and 1
6
. In Appendix B, I show how to map a choice for s into a set of contract

weights θ1 to θ4. In Table 1, I perform this mapping for selected values of s. As shown, as

s decreases, the weight on the longer contracts increases. In this stochastic contract setup,

the contract price rule for the standard model becomes

Pt =
3
∑

i=0

fiEt

(

P̄t+i + γỸt+i
)

(10)

while, for the relative contract setup, following Fuhrer and Moore (1995)

Pt − P̄t =
3
∑

i=1

fiEt

(

Vt+i + γỸt+i
)

(11)

where Vt can be substituted into (11) from equation (5).

2.3 Nesting the two models

Let δ govern the fraction of agents using relative contracts. Then the standard and the

relative contract models can be nested by letting the contract price equation become

Pt − δP̄t =
3
∑

i=1

fiEt

(

V n
t+i + γỸt+i

)

(12)

where the index V n
t is given by

V n
t =

n−1
∑

i=0

1

n

(

Pt−i − δP̄t−i
)

(13)

2This is equivalent to the condition imposed by Fuhrer and Moore (1995) that the polynomial in the lag operator

used to rewrite the aggregate price equation be invertible.
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3 VAR estimation

In order to assess the properties of the data that the contracting specification needs to

reproduce I rely on a simple statistical model that takes the form of a VAR. Detrended

output and inflation are the series of interest. Following Bernanke and Blinder (1992),

Fuhrer and Moore (1995) and Coenen and Wieland (2000), I include the short term nominal

interest rate in the VAR to help in the formation of output expectations. Thus the three

endogenous variables in the VAR are detrended log of output, inflation and the short term

interest rate.

Just as Fuhrer and Moore (1995) the series for the above variables come from the

productivity release of the Bureau of Labor Statistics. While the interest rate series goes

back to 1934, the output and price series start in the first quarter 1947. For the VAR

estimation I discard the first part of the sample and take the first quarter of 1960 as the

starting date for the analysis. I keep this first portion of the data as a presample, that I

exploit later in the maximum-likelihood estimation of the structural parameters.

The measure of output that I consider is log of the nonfarm business output per person.

The measure of inflation comes from a quarterly difference in the log of the nonfarm business

output deflator. Finally the interest rate series is the 3 month treasury bill rate from the

secondary market quoted on a discount basis.

I linearly detrend the output measure 3 In the detrending, I have considered both single

as well as multiple trends. I have considered breaks in 1983q1, which coincides with the

end of Volcker’s disinflation program, as an alternative, as well as 1992. The additional

trends do not appear to affect the results. Here, I report only the results using one trend.

To decide the number of lags for the endogenous variables in the VAR equations I

followed the general-to-specific approach. I started with a specification that included eight

lags. I reduced this number, until the parameters on the longest lag were jointly significant

across equations, and the residuals were uncorrelated. To test for correlation, I used a

3While one-sided filtering would be more rigorous, I use linear detrending procedure to ensure comparability with

the results of Fuhrer and Moore (1995). I reserve the one-sided-filtering refinement to possible extensions of this paper.
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Portmentau test on lag 12. I settled on a VAR specifications that included three lags of all

the endogenous variables. The VAR structure on which I settle has the form

Ỹt =
3
∑

i=1

Cy,1,iỸt−i + Cr,1,irt−i + Cπ,1,iπt−i + εy,t (14)

rt =
3
∑

i=1

Cy,2,iỸt−i + Cr,2,irt−i + Cπ,2,iπt−i + εr,t (15)

πt =
3
∑

i=1

Cy,3,iỸt−i + Cr,3,irt−i + Cπ,3,iπt−i + επ,t (16)

where rt is the short-term interest rate. The intercept term is excluded from the VAR

structure to ensure a zero-inflation steady state, consistent with the two contracting spec-

ifications in this paper4.

When varying the sample length, I kept the VAR structure fixed. For reasons of space,

I do not report all the coefficient estimates over the various subsamples I consider. I

show the correlograms for the endogenous variables in Figure 1(this figure also includes

the correlograms from the structural estimation described below). The correlogram has

the advantage over impulse response functions of not requiring an identification scheme.

I also report a 90% confidence interval around the correlograms. This is calculated using

the Monte Carlo procedure described by Christiano, Eichenbaum, and Evans (1999).

4 Structural estimation

In order to estimate the structural parameters in the standard and in the relative contract-

ing specification, I replace the the inflation equation in the VAR described in equations

4The parameter estimates for the VAR are relegated to an appendix. A likelihood ratio test confirms the validity of

the restriction that the constant term be zero. The conclusions reported below are resilient to reintroducing a constant

in the VAR. Excluding the constant does affect the shape of the correlogram for inflation and the interest rate from the

VAR, depicted in Figure 1. Without a constant, the inflation persistence implied by the VAR appears to be higher, thus

making the task for the structural model harder, given the prior, from Fuhrer’s and Moore’s work, that the structural

model is not capable of reproducing the inflation persistence in the data.
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(29) to (31) with the relevant contract equations. I link prices to inflation by using

πt = 4(P̄t − P̄t−1) (17)

Therefore, in the case of standard contracts, I call structural model the system of equations

(10), (8) and (17), plus (29) and (30) from the VAR.

In the case of relative contracts, I call structural model the system of equations (11),

(8) and (17), plus (29) and (30) from the VAR. For the purposes of estimation, I augment

the contract price equation in both structural models with an observational error that I

call εP,t.

In both cases, the state space is given by Xt ≡ (P̄t, πt, Pt, ỹt, rt)
′. For any choice of

the parameters γ and s, by standard methods, I can find the AR(1) representation for the

variables in the state space, which can then be rewritten as

Xt = A1Xt−1 + A2Xt−2 + A3Xt−3 + Cεt (18)

where εt = (εy,t, εr,t, εP,t)
′, while A1, A2, A3, and B are conformable matrices of coefficients

(which can be thought of as functions of s and γ). This system of equations, however, still

holds two identities. I then split the state space Xt into two parts St and Zt. St is defined

as St ≡ (P̄t, Pt)
′, while Zt is defined as Zt ≡ (Ỹt, rt, πt)

′. I can then rewrite equation (18)

as

Zt = Ã1Zt−1 + Ã2Zt−2 + Ã3Zt−3 + B̃1St−1 + B̃2St−2 + B̃3St−3 + C̃εt (19)

To form the maximum likelihood function, I follow Harvey (1981), and condition on the

first observation. I use the innovation representation of equation (19) , assuming that εt is

identically and independently distributed across time as normal. To form the likelihood,

the last hurdle to overcome is that the contract price Pt is unobserved. To remedy this, I

adopt the following procedure. I assume that Pt, prior to 1947, is in steady state. Given

a choice for γ and s, I use equation (19) to back out εt. Using equations (18) and (19) I

can then dynamically generate a series for Pt and εt. In order to dilute the assumption

that Pt be in steady state prior to 1947, I use data for the period between 1947 and 1960
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as a presample, with the sole purpose of initializing the value of Pt. I have used Monte

Carlo experiments to confirm that after a period of 13 years, the initial value of Pt becomes

irrelevant. I maximize the likelihood using a Newton-Raphson based algorithm. To verify

that the output of the algorithm maximizes the likelihood function, I use a linear-search

procedure.

4.1 Estimation Results

The estimation results are summarized in Tables 2 to 4. Table 2 reports the estimates for

the relative contract model. Regressions 1 to 3 differ by the starting date of the sample.

In regression 1, whose sample starts in 1980, s, the parameters governing the distribution

of contract durations, is estimated at 0.0460, with a standard error of 0.0149. The implied

distribution of contract durations is the following: 5% of contracts last one quarter, 9%

two quarters, 14% three quarters, 72 % four quarters. The weight of the output measure

in the contract equations, γ, is estimated at 0.0425 with a standard error of 0.0161. Both

estimates are highly statistically significant. The variation in s over different samples is not

statistically significant. The estimate of γ drops in Regression 2, when the sample starts

in 1965q1, and in Regression 3, when the sample starts in 1960q15. This is consistent

with a higher persistence of the inflation process in the 1960s and 1970s. A Portmenteau

test on the residuals of this regression (one equation at a time), whose Q(12) statistics are

reported in Table 5, rejects the null hypothesis of white noise disturbances at conventional

significance levels.

Table 3 reports the estimates for the relative contract specification. For Regression 1,

whose sample spans 1980q1 - 2001q4, the estimate for s is 0.0895, with a standard deviation

of 0.0298. Over the longer samples, the estimates for s and gamma, are not statistically

significantly different.

5Using the sample from 1965 to 1993 (as Fuhrer and Moore were constrained to do), I can obtain estimates of the

parameters for the relative contract model, but not for the standard model. These estimates are in line with the ones

originally reported by Fuhrer and Moore (1995).
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Table 4 reports the estimates for a contracting specification that nests both the relative

and the standard model. The fraction of agents adopting relative contracts, δ, is estimated

in the order of 80% regardless of the start of the sample. The estimate is statistically

significant at standard confidence levels.

Figure 1 compares the correlograms for inflation, the output measure and the interest

rate obtained from three sources: the VAR, the estimated structural model with standard

contracts, and the estimated structural model with relative contracts. The sample period

used is that of regression 1, from 1980q1 to 2001q4. Figures 2 and 3 repeat the comparisons

respectively for the sample period 1965q1-2001q4 and for 1960q1-2001q4. Across samples,

one can see that the correlogram for inflation for both relative and standard contracts

is close to the correlogram for the VAR and is contained within the Monte-Carlo 90%

confidence interval for the correlogram for the VAR.

Figures 4 to 6 compare the fitted values for inflation from the structural model with

relative contracts, and from the structural model with standard contracts with the actual

values for inflation. Each of these figures focuses on a different sample. Both models

appear to perform satisfactorily across samples. Especially for the sample 1980q1-2001q4,

it is hard to distinguish the performance of the two models.

Using the information in Tables 2 to 4, one can set up a likelihood ratio test for the

restriction that the nested structural model only includes either the standard or the relative

contract specification. The standard model is rejected, while the relative model fails to be

rejected at conventional significance levels. At first, in light of the comparisons of the

correlograms in Figures 1 and 3, this finding appears surprising. In those figures, the

performance of standard contracts appeared hardly distinguishable from the performance

of relative contracts. Figure 7 provides an explanation for the results of the likelihood

ratio tests. In the case of the cross-correlogram for inflation on lagged output, and for

output on lagged inflation, the standard model at lags 1 to 5, lies well outside the 90%

confidence interval. It is on these dimensions that the likelihood test is penalizing the

standard contract specification. This provides an explanation for why the proportion of
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relative contracts in the standard model is estimated as being so high, as well as why the

standard model is rejected when performing a likelihood-ratio test. Figures 8 and 9 confirm

that the same finding applies when the sample starts in 1965q1 or 1960q1, respectively.

In the light of figures 7 to 9, the Standard model performs satisfactorily in terms of

reproducing the inflation persistence implied by the correlogram from the VAR. Where it

is not performing as well as the relative contract model is in reproducing the comovements

between output and inflation.

4.2 Comparing Impulse Response Functions

Fuhrer and Moore (1995) closed their model by estimating a VAR in output, inflation and

the interest rate. This is the way I proceed for the purposes of estimating the unknown

parameters in the contract equations. To understand the differences in the standard and

relative contracts, instead of pursuing this route, one could more simply complete the model

by following Taylor (1980), specifying equations for the demand and supply of money. It is

easier to examine the differences imparted by the choice of contracting specification when

the response of money is kept constant. This could not be achieved with an interest rate

reaction function. Thus, let the demand for nominal money balances, Mt take the form

Mt = Pt + yt (20)

And let money supply be described by

Mt = Mt−1 + µt (21)

where µt, the rate of growth of money supply, is given by µt = ρµt−1 + εt and εt is an i.i.d.

error term6. One is now in a position to simulate the effects of shocks in the two models

so as to assess the persistence properties of each specification. An area where one would

expect the difference between the two contracts to emerge is in the response to monetary

shocks.

6The money supply equation adopted here comes from Christiano, Eichenbaum, and Evans (1998) who argue that

this is a good approximation to money supply for both M1 and M2 in the U.S., as long as ρ is chosen to be close to 0.5.
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I have performed a battery of tests, using temporary and permanent, announced and

unannounced shocks to the rate of growth of money supply as well as to the level of money.

In Figure 10 and 11, I report the impulse response functions for an unannounced shock

to the rate of growth of money supply. The intuition gained in this case holds true for

all the other shocks I considered. Holding the distribution of contract durations constant,

the choice of γ, the weight on output in the contract equation, governs the persistence of

inflation that the two contracting specifications can yield. Figures 10 and 11 differ by the

choice of values for γ. Comparing Figures 10 and 11 one can see that the lower the value

of γ, the greater the persistence. The path for inflation does look different whether one

uses standard of relative contracts, however, it seems hard to draw any conclusions about

the relative persistence.

Varying the value of s, not surprisingly, also affect the path for inflation. Lower values

of s, by placing a greater weight on longer contracts, yield a more persistent response

of inflation. In the light of this analysis, for the purposes of generating greater inflation

persistence, given the choice of n, and γ, one would then replace standard contracts with

relative contracts if lowering s did not produce enough extra persistence.

5 Conclusion

I have used a simple VAR to capture the properties of the data that a contract model

needs to reproduce. My estimation results indicate that the contract model of Taylor

(1980) performs as well as the relative contract model featured in Fuhrer and Moore (1995)

at reproducing the inflation persistence observed in the data. Both types of contract

specifications come close to replicating the second moments captured by a simple, non-

structural VAR.

Overall, the relative contract model does fit the data better than the standard contract

model. However, the capacity to generate inflation persistence does not appear to be the

major difference driving the results. The cross-correlograms for inflation and output, at

14



small lags, are where I observe a better performance for the relative contract model.

When limiting the estimation sample to the 1980s and 1990s, I find that parameters

for both contract models shift consistently with lower inflation persistence. However, this

shift is statistically significant only for the case of standard contracts.

I read the estimation results in this paper as supporting that the standard staggered

contract model of Taylor (1980) is perfectly adequate to capture the inflation persistence

in the U.S. data. To explain the inflation behavior observed in the late 1960s and 1970s, it

seems more appropriate to build extra structure to the model, rather than requiring that

the contract model be able to explain a higher degree of inflation persistence.
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Figure 1: Correlogram for Regression 1 (1980q1 – 2001q4)
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Figure 2: Correlogram for Regression 2 (1965q1 – 2001q4)
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Figure 3: Correlogram for Regression 3 (1960q1 – 2001q4)
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Figure 7: Comparing cross-correlograms for Regression 1 (1980q1 – 2001q4)
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Figure 8: Comparing cross-correlograms for Regression 2 (1965q1 – 2001q4)
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Figure 9: Comparing cross-correlograms for Regression 3 (1960q1 – 2001q4)
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Figure 10: Response to an unannounced shock to the rate of growth of money supply.
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Figure 11: Response to an unannounced shock to the rate of growth of money supply.
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A The equation for inflation under the setup of Taylor

(1980)

In a symmetric two-period setup, the log of the aggregate price level, P̄t, is given by:

P̄t =
1

2
(Pt + Pt−1) (22)

where Pt is the contract price. Equation (4), that governs the contract price, for a two

period setup, can be rewritten as

Pt =
1

2
Pt−1 +

1

2
EtPt+1 + γ(ỹt + Etỹt+1) (23)

where ỹt adjusts the contract for excess demand. Combining equation 22 and equation 23,

one obtains:

P̄t =
1

2
(
1

2
Pt−1 +

1

2
EtPt+1 +

1

2
Pt−2 +

1

2
Et−1Pt) +

γ

2
(ỹt + Etỹt+1 + ỹt−1 + Et−1ỹt) (24)

Using equation 22, equation 24 can be rewritten as:

P̄t =
1

2
(EtP̄t+1 + P̄t−1) +

γ

2
(ỹt + Etỹt+1 + ỹt−1 + Et−1ỹt)−

1

4
εt (25)

where εt is a forecast error such that Et−1wt = wt − εt.

To reformulate equation 25 in terms of inflation, notice that since the price level, P̄t, is

in log form, the inflation at time t, πt, is given by πt = P̄t− P̄t−1. Therefore, using equation

25, subtracting P̄t−1 from both sides:

P̄t − P̄t−1 =
1

2
(EtP̄t+1 − P̄t−1) +

γ

2
(ỹt + Etỹt+1 + ỹt−1 + Et−1ỹt)−

1

4
εt (26)

Rearranging the terms in the equation above, and adding and subtracting 1
2
Pt:

πt =
1

2
(EtP̄t+1 − P̄t + P̄t − P̄t−1)

+
γ

2
(ỹt + Etỹt+1 + ỹt−1 + Et−1ỹt)−

1

4
(εt)

which, in turn, can be rewritten as:

πt =
1

2
(Etπt+1 + πt) +

γ

2
(ỹt + Etỹt+1 − ỹt−1 + Et−1ỹt)−

1

4
(εt) (27)

Therefore, collecting terms in equation 27 yields:

πt = Etπt+1 + γ(ỹt + Etỹt+1 + ỹt−1 + Et−1ỹt)−
1

2
εt (28)
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B Mapping s into contract weights

Expanding equation (7), one obtains

P̄t = θ1Pt

+
θ2

2
(Pt + Pt−1)

+
θ3

3
(Pt + Pt−1 + Pt−2)

+
θ4

4
(Pt + Pt−1 + Pt−2 + Pt−3)

But θ4 = 1− θ1 − θ2 − θ3. Using equation (8), combined with the equation above, one can

see that

f0 = θ1 +
1

2
θ2 +

1

3
θ3 +

1

4
(1− θ1 − θ2 − θ3)

f1 =
1

2
θ2 +

1

3
θ3 +

1

4
(1− θ1 − θ2 − θ3)

f2 =
1

3
θ3 +

1

4
(1− θ1 − θ2 − θ3)

Which leads to













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
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
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
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
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1
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where fi = 0.25 + (1.5− i)s, for 0 < s ≤ 1
6

C VAR estimation results

The VAR for detrended output, the interest rate and inflation, takes the form:

Ỹt = Cc,1 +
3
∑

i=1

Cy,1,iỸt−i + Cr,1,irt−i + Cπ,1,iπt−i + εy,t (29)

rt = Cc,2 +
3
∑

i=1

Cy,2,iỸt−i + Cr,2,irt−i + Cπ,2,iπt−i + εr,t (30)

πt = Cc,3 +
3
∑

i=1

Cy,3,iỸt−i + Cr,3,irt−i + Cπ,3,iπt−i + επ,t (31)
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The estimation results for the sample 1980 – 2001 are reported in Table 5. Table 6 reports

the restricted estimates, over the same sample excluding the constant term from each

equation. A likelihood ratio test confirms the validity of the restriction. The log likelihood

for the unrestricted VAR is 903, while for the restricted VAR the log likelihood is 901.

The null hypothesis that the restriction is valid fails to be rejected at standard significance

levels.
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Table 5: VAR Parameter Estimates (constant included), Regression 1 (1980q1 – 2001q4)

Parameter Estimate Error t-statistic P-value
Cc,1 .110E-02 .197E-02 .558 [.577]
Cy,1,1 .913 .101 9.01 [.000]
Cy,1,2 .197 .134 1.47 [.142]
Cy,1,3 -.230 .0968 -2.38 [.017]
Cr,1,1 .212 .0974 2.17 [.030]
Cr,1,2 -.500 .133 -3.77 [.000]
Cr,1,3 .310 .0915 3.39 [.001]
Cπ,1,1 -.132 .0726 -1.82 [.068]
Cπ,1,2 .044 .0684 .647 [.518]
Cπ,1,3 -.306E-02 .0692 -.0443 [.965]
Cc,2 .409E-02 .220E-02 1.86 [.063]
Cy,2,1 1.11 .109 10.3 [.000]
Cy,2,2 .0905 .150 .605 [.545]
Cy,2,3 -.228 .108 -2.10 [.035]
Cr,2,1 1.21 .0805 15.1 [.000]
Cr,2,2 -.569 .148 -3.84 [.000]
Cr,2,3 .245 .102 2.40 [.016]
Cπ,2,1 .0193 .0810 .238 [.812]
Cπ,2,2 .392 .0760 5.14 [.000]
Cπ,2,3 -.103 .0771 -1.34 [.180]
Cc,3 .156E-02 .298E-02 .524 [.600]
Cy,3,1 .125 .153 .812 [.416]
Cy,3,2 -.513 .200 -2.55 [.011]
Cy,3,3 .150 .146 1.03 [.303]
Cr,3,1 .600 .147 4.08 [.000]
Cr,3,2 -.675 .227 -2.98 [.003]
Cr,3,3 -.0135 .138 -.0978 [.922]
Cπ,3,1 .391 .110 3.57 [.000]
Cπ,3,2 .198 .103 1.92 [.055]
Cπ,3,3 .147 .104 1.40 [.160]

Number of observations = 85 Log likelihood = 903.188
Equation: ỹ Variance of residuals = .356228E-04 Std. error of regression = .596849E-02 R-squared =
.846797
Equation: r Variance of residuals = .443094E-04 Std. error of regression = .665653E-02 R-squared =
.943060
Equation: π Variance of residuals = .812260E-04 Std. error of regression = .901254E-02 R-squared =
.787872
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Table 6: VAR Parameter Estimates (constant excluded), Regression 1 (1980q1 – 2001q4)

Parameter Estimate Error t-statistic P-value

Cy,1,1 .917142 .101471 9.03844 [.000]

Cy,1,2 .192108 .134050 1.43310 [.152]

Cy,1,3 -.235178 .096710 -2.43179 [.015]

Cr,1,1 .228172 .092938 2.45510 [.014]

Cr,1,2 -.511142 .131610 -3.88378 [.000]

Cr,1,3 .325152 .087388 3.72080 [.000]

Cπ,1,1 -.132020 .072761 -1.81443 [.070]

Cπ,1,2 .041451 .068358 .606379 [.544]

Cπ,1,3 -.014888 .065960 -.225713 [.821]

Cy,2,1 .263326 .115230 2.28523 [.022]

Cy,2,2 .072040 .152226 .473242 [.636]

Cy,2,3 -.243371 .109823 -2.21604 [.027]

Cr,2,1 1.17428 .105539 11.1265 [.000]

Cr,2,2 -.608304 .149455 -4.07016 [.000]

Cr,2,3 .302533 .099237 3.04859 [.002]

Cπ,2,1 .020595 .082627 .249247 [.803]

Cπ,2,2 .382025 .077626 4.92132 [.000]

Cπ,2,3 -.147313 .074903 -1.96671 [.049]

Cy,3,1 .129185 .153191 .843291 [.399]

Cy,3,2 -.226571 .202375 -1.11956 [.263]

Cy,3,3 .144489 .146003 .989633 [.322]

Cr,3,1 .623527 .140308 4.44400 [.000]

Cr,3,2 -.526763 .198690 -2.65117 [.008]

Cr,3,3 .834549E-02 .131929 .063257 [.950]

Cπ,3,1 .391898 .109847 3.56766 [.000]

Cπ,3,2 .193988 .103200 1.87973 [.060]

Cπ,3,3 .129899 .099579 1.30448 [.192]

Number of observations = 85 Log likelihood = 901.429

EQ1 : ỹ Variance of residuals = .357534E-04 Std. error of regression = .597941E-02 R-squared =

.846296

Equation: r Variance of residuals = .461063E-04 Std. error of regression = .679017E-02 R-squared =

.942303

Equation: π Variance of residuals = .814885E-04 Std. error of regression = .902710E-02 R-squared =

.787436
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